Use of Small Unmanned Aircraft to Study the Lower Arctic Troposphere

with substantial contributions from (alphabetically):

Brian Argrow¹, Al Bendure³, Geoff Bland⁴, Steven Borenstein¹, Nathan Curry¹, Phillip D'Amore¹, Jack Elston⁵, Will Finamore¹, Ru-Shan Gao², Terry Hock⁶, Mark Ivey³, Dale Lawrence¹, Gabe LoDolce¹, Chuck Long^{1,2}, James Mack¹, Tevis Nichols¹, Scott Palo¹, Beat Schmid⁷, Hagen Telg^{1,2}, Doug Weibel¹

University of Colorado Boulder

(3)

Sandia National Laboratories

(4)

(5) Black Sw

(6)

(7

Pacific Northwest
NATIONAL LABORATORY

Introduction and Science Drivers

To get the full story, we need new perspectives. Specifically, to develop process-level understanding and model parameterizations we need:

- Additional information on spatial variability across a variety of scales
- Frequent profiling of aerosol, thermodynamic and cloud properties
- Information over "hard-to-reach" environments, such as thin or broken sea ice and the expansive tundra

Platforms

CU DataHawk2

Description:

1 m wingspan 800 g total weight ~\$850 vehicle parts cost 15-20 m s⁻¹ typical airspeed 75 min flight duration (level) ~70 km range (level) ~4 km max altitude (powered) 50 m turn radius 5 m s⁻¹ maximum climb rate

Measurement Capabilities

Temperature
Relative Humidity
Pressure
3D wind vector estimate
IR Surface Temperature
Location

Platforms

CU Pilatus

Description:

3.2 m wingspan

24 kg total weight (including payload)

25-30 m s⁻¹ typical airspeed

25 min flight duration (level)

Measurement Capabilities:

Aerosol size/number

Broadband radiation

Temperature

Humidity

Pressure

Position

Wind estimate

Research Site and Airspace

Thermodynamic Structure

Thermodynamic Structure

NOAA UAS Users Symposium, 25-27 October, La Jolla, CA

Surface Energy Fluxes

Surface Energy Fluxes

NOAA UAS Users Symposium, 25-27 October, La Jolla, CA

Aerosols and Radiation

NOAA UAS Users Symposium, 25-27 October, La Jolla, CA

Model Evaluation and Improvement

PSD supports development of experimental sea ice forecasting tools to support Arctic decision making. This tool uses the Regional Arctic System Model (RASM) in a coupled mode to predict ice formation and melt over short to medium time scales. We are using UAS measurements as a means for validation of model performance and for collection of data to aid in parameterization development.

Summary

- We are using small unmanned aircraft to study the lower Arctic troposphere and its interaction with sea ice, tundra and ocean surfaces.
- This includes efforts to measure thermodynamic structure, cloud-relevant aerosol processes, radiation and surface state.
- These measurements are being used to evaluate and improve PSD's regional sea ice forecasting capability and develop process-level understanding of features critical to modulating energy transfer through the atmosphere.